Vacancy defects and monopole dynamics in oxygen-deficient pyrochlores.

نویسندگان

  • G Sala
  • M J Gutmann
  • D Prabhakaran
  • D Pomaranski
  • C Mitchelitis
  • J B Kycia
  • D G Porter
  • C Castelnovo
  • J P Goff
چکیده

The idea of magnetic monopoles in spin ice has enjoyed much success at intermediate temperatures, but at low temperatures a description in terms of monopole dynamics alone is insufficient. Recently, numerical simulations were used to argue that magnetic impurities account for this discrepancy by introducing a magnetic equivalent of residual resistance in the system. Here we propose that oxygen deficiency is the leading cause of magnetic impurities in as-grown samples, and we determine the defect structure and magnetism in Y2Ti2O7-δ using diffuse neutron scattering and magnetization measurements. These defects are eliminated by oxygen annealing. The introduction of oxygen vacancies causes Ti(4+) to transform to magnetic Ti(3+) with quenched orbital magnetism, but the concentration is anomalously low. In the spin-ice material Dy2Ti2O7 we find that the same oxygen-vacancy defects suppress moments on neighbouring rare-earth sites, and that these magnetic distortions markedly slow down the long-time monopole dynamics at sub-Kelvin temperatures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-principles investigation of low energy E' center precursors in amorphous silica.

We show that oxygen vacancies are not necessary for the formation of E' centers in amorphous SiO₂ and that a single O deficiency can lead to two charge traps. Employing molecular dynamics with a reactive potential and density functional theory, we generate an ensemble of stoichiometric and oxygen-deficient amorphous SiO₂ atomic structures and identify low-energy network defects. Three-coordinat...

متن کامل

Effect of Defects on Mechanical Properties of Graphene under Shear Loading Using Molecular Dynamic Simulation

Graphene sheet including single vacancy, double vacancy and Stone-Wales with armchair and zigzag structure was simulated using molecular dynamics simulation. The effect of defects on shear’s modulus, shear strength and fracture  strain was investigated. Results showed that these shear properties reduce when the degrees of all kinds of defects increase. The dangling bond in SV and DV defected gr...

متن کامل

Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing...

متن کامل

POINT DEFECTS IN FeAl

Point defects in annealed B2-phase FeAl samples in the range 47-53 at.% Fe were studied using 57Fe Mössbauer spectroscopy. Spectra were analyzed using local environment models according to which point defects in atomic shells close to probe atoms induce shifts in the nuclear monopole interaction. For well-annealed samples, better results were obtained assuming only the presence of FeAl antisite...

متن کامل

Vacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon

Spin-polarized electronic and transport properties of Armchair GraphdiyneNanoribbons (A-GDYNR) with single vacancy (SV), two types of configurations fordouble vacancy (DV1, DV2) and multi vacancy (MV) defects are studied by nonequilibriumGreen’s function (NEGF) combined with density functional theory (DFT).The results demonstrate that the A-GDYNR with the SV has the lowe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature materials

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 2014